分站入口:抖音快手短视频解析 | 领取购物优惠券
百度360必应搜狗本站头条热榜
当前位置:网站首页 > 抖音AI > 正文

百度文库ai生成ppt保存在哪里,百度文库ai生成ppt

DouJia 2025-02-20 16:30 124 浏览

  基于深度学习的有监督语音分离在学术界和工业界越来越受到关注百度文库ai生成ppt,也是深度学习在语音领域的应用中重要的一部分。作为雷锋网 AI 研习社近期组织的一系列语音领域应用的分享会之一,本次百度文库ai生成ppt我们请到了来自搜狗的研究员文仕学对语音分离方面主要的研究课题和相关方法做一些介绍。

  ? 观看完整回顾大概需要31分钟

  文仕学,过去学物理,后来学 EE,现在从事 Deep Learning 工作,未来投身 AI 和 CM 事业。他的研究兴趣在于语音信号处理和深度学习。在加入搜狗之前,曾在中国科学技术大学学习,在该领域的期刊和会议上发表了若干篇论文。现在在搜狗语音团队任副研究员。

  AI研习社将本次分享的内容整理如下。

  

  分享主题:基于深度学习的语音分离

  

  文仕学首先介绍了 “语音分离”(Speech Separation)是怎么样的一种任务。这个问题来自于 “鸡尾酒会问题”,采集的音频信号中除了主说话人之外,还有其他人说话声的干扰和噪音干扰。语音分离的目标就是从这些干扰中分离出主说话人的语音。

  根据干扰的不同,语音分离任务可以分为三类:

当干扰为噪声信号时,可以称为 “语音增强”(Speech Enhancement)

当干扰为其他说话人时,可以称为 “多说话人分离”(Speaker Separation)

当干扰为目标说话人自己声音的反射波时,可以称为 “解混响”(De-reverberation)

  由于麦克风采集到的声音中可能包括噪声、其他人说话的声音、混响等干扰,不做语音分离、直接进行识别的话,会影响到识别的准确率。因此在语音识别的前端加上语音分离技术,把目标说话人的声音和其它干扰分开就可以提高语音识别系统的鲁棒性,这从而也成为现代语音识别系统中不可或缺的一环。

  基于深度学习的语音分离,主要是用基于深度学习的方法,从训练数据中学习语音、说话人和噪音的特征,从而实现语音分离的目标。

  

  这次分享的内容有以下这 5 个部分:分离使用的模型、训练目标的设置、训练数据的生成、单通道语音分离算法的介绍和讨论。

  基于深度学习的语音分离方法使用的模型

  

  第一类模型是多层感知机,DNN,可以先做 RBM 预训练,再做微调(fine-tune);不过文仕学介绍,他们团队通过实验发现,在大数据集上不需要预训练也可以收敛。

  LSTM(长短时记忆网络)的方法中把语音作为一个随时间变化的序列进行建模,比较适合语音数据;CNN(卷积神经网络)通过共享权值,可以在减少训练参数的同时获得比全连接的 DNN 更好的性能。

  近些年也有人用 GAN(对抗性生成式网络)做语音增强。模型中通常会把生成器设置为全部是卷积层,为了减少训练参数从而缩短训练时间;判别器负责向生成器提供生成数据的真伪信息,帮助生成器向着 “生成干净声音” 的方向微调。

  训练目标的设置

  训练目标包括两类,一类是基于 Mask 的方法,另一类是基于频谱映射的方法。

  

  基于 Mask 的方法又可以分为几类

“理想二值掩蔽”(Ideal Binary Mask)中的分离任务就成为了一个二分类问题。这类方法根据听觉感知特性,把音频信号分成不同的子带,根据每个时频单元上的信噪比,把对应的时频单元的能量设为 0(噪音占主导的情况下)或者保持原样(目标语音占主导的情况下)。

第二类基于 Mask 的方法是 IRM(Ideal Ratio Mask),它同样对每个时频单元进行计算,但不同于 IBM 的 “非零即一”,IRM 中会计算语音信号和噪音之间的能量比,得到介于 0 到 1 之间的一个数,然后据此改变时频单元的能量大小。IRM 是对 IBM 的演进,反映了各个时频单元上对噪声的抑制程度,可以进一步提高分离后语音的质量和可懂度。

  

TBM 与 IRM 类似,但不是对每个时频单元计算其中语音和噪声的信噪比,而是计算其中语音和一个固定噪声的信噪比

SMM 是 IRM 在幅度上的一种形式

PSM 中加入了干净语音和带噪语音中的相位差信息,有更高的自由度

  虽然基于 Mask 的方法有这么多,但最常用的还是开头的 IBM 和 IRM 两种

  

  如果使用频谱映射,分离问题就成为了一个回归问题。

  频谱映射可以使用幅度谱、功率谱、梅尔谱以及 Gammatone 功率谱。Gammatone 是模拟人耳耳蜗滤波后的特征。为了压缩参数的动态范围以及考虑人耳的听觉效应,通常还会加上对数操作,比如对数功率谱。

  基于频谱映射的方法,是让模型通过有监督学习,自己学习有干扰的频谱到无干扰的频谱(干净语音)之间的映射关系;模型可以是 DNN、CNN、LSTM 甚至 GAN。

  

  这一页是使用相同的 DNN 模型、相同的输入特征、不同的训练目标得到的结果。

  左边的 STOI 指语音的可懂度,得分在 0 到 1 之间,越高越好;右边的 PESQ 是语音的听觉质量、听感,范围为 - 0.5 到 4.5,也是越高越好。

  基于 Mask 的方法 STOI 表现较好,原因是有共振峰的能量得到了较好的保留,而相邻共振峰之间波谷处的声音虽然失真较大,但人耳对这类失真并不敏感;两类方法在 PESQ 中表现相当。

  训练数据的生成

  

  针对语音分离中的语音增强任务,首先可以通过人为加噪的方法生成带噪语音和干净语音对,分别作为输入和输出(有标注数据),对有监督学习模型进行训练。加入的噪声可以是各种收集到的真实世界中的噪声。

  

  不过收集噪声需要成本,而且人工能够收集到的噪音总是有限的,最好能够有一套完备、合理的方案,用仿真的方式生成任意需要的噪声。 在今年的 MLSP(信号处理机器学习)会议上,搜狗语音团队就发表了一项关于噪声基的工作,通过构造一个噪声基模型,在不使用任何真实噪音数据的情况下,生成带噪语音对语音增强模型进行训练,达到了与使用 50 种真实噪音的情况下相当的性能(下图)。

百度文库ai生成ppt保存在哪里,百度文库ai生成ppt

  

  如果将这 50 种真实噪声和噪声基产生的数据混合在一起,性能可以比单独使用真实噪音的情况得到进一步提高。这也说明噪声基生成的噪声和真实噪声数据之间有着互补性,在实际应用中也可以解开一些真实噪声数据不足带来的限制。

  单通道语音分离算法

  

  如开头所说,语音分离任务可以分为三类,语音增强、多说话人分离和解混响。不同任务的处理方法也有所不同。

  对于语音增强,基于 Mask 的方法首先进行耳蜗滤波,然后特征提取、时频单元分类、二值掩蔽、后处理,就可以得到增强后的语音了。

  

  语音增强的另一类基于频谱映射的方法中,先特征提取,用深度神经网络学习带噪语音和干净语音的对数功率谱之间映射关系,再加上波形重建,就可以得到增强后的语音。

  

  基于有监督学习的算法都存在推广性(generalization)的问题,语音增强这里也不例外。针对噪音类型、信噪比和说话人的推广性都还有提升的空间。

  

  对于解混响,同样可以使用基于频谱映射的方法。解混响中也需要生成训练数据,但不同于带噪语音生成时做时域的相加,带混响的语音是在时域上进行卷积;同样都把干净语音作为带标注数据。

  

  在基于频谱映射的方法基础上还可以加以改进。对于不同的混响时间,深度神经网络需要学习的时间窗口长度是不一样的,因而改进方法中加入了告知混响时间的功能,根据帧移 R 和扩帧数目 N 提特征后解码,可以获得更好的解混响效果。

  

  多说话人分离分为三种情况

目标说话人和干扰说话人都固定,Speaker dependent,有监督分离

目标说话人固定,训练阶段和测试阶段的干扰说话人可变,Target dependent,半监督分离

目标说话人和干扰说话人都可变,Speaker independent,无监督分离

  

百度文库ai生成ppt保存在哪里,百度文库ai生成ppt

  对于有监督和半监督分离,可以使用基于频谱映射的方法,与前面使用基于频谱映射的方法做语音增强类似。

  

  对于无监督分类,有无监督聚类、深度聚类以及最近的序列不变训练(PIT)方法。PIT 方法的核心是红框中标出的部分,在误差回传的时候,分别计算输出序列和标注序列间各种组合的均方误差,然后从这些均方误差中找到最小的那个作为回传误差,也就是根据自动找到的声源间的最佳匹配进行优化,避免出现序列模糊的问题。

  讨论两个问题

  

  最后,文仕学给大家留了两个思考题,欢迎大家在评论区给出自己的见解。

第一个问题是语音分离任务中,是按传统思路先变换到频域,然后在频域上进行处理,还是直接在时域上处理比较好?后者的好处是端到端训练,不用考虑频域方法做傅立叶反变换时相位的问题。

第二个问题是对于语音增强任务,应该使用真实噪声加噪还是使用人工仿真生成的噪声进行降噪?

  感谢文仕学此次的分享以及对文本的指正,也欢迎大家关注 AI 研习社未来的更多分享活动!

  如何用 MOOC 组合掌握机器学习?

相关推荐

日本今年将推动AI立法,日本立法程序
日本今年将推动AI立法,日本立法程序

  据了解日本今年将推动AI立法,为了节约资源、保护生态日本今年将推动AI立法,我国在1999年就颁布了《包装资源回收利用暂行管理办法》日本今年将推动AI立法,鼓励包装回收和再利用。其中还对回收办法、回收渠道、回收分级、回收单位、回收再利用...

2025-10-26 08:30 DouJia

AI创作家(ai创作家app)
AI创作家(ai创作家app)

AI创作家多功能AI创作工具,支持AI写作AI聊天AI绘画AI做题等能模拟真实人类对话,提供即时回复和高情商聊天体验,可用于日常闲聊创作诗歌小说等文本内容情感交流与陪伴类Replika专注于情感交流AI创作家的AI聊天工具,能提供个性化对话...

2025-10-26 05:34 DouJia

dota6.67ai(dota667ai地图下载)
dota6.67ai(dota667ai地图下载)

AI主流模式ap全阵营选择dr死亡竞赛模式ar全随机模式wtf娱乐模式最好还要加nedota6.67ai,ng就是电脑加钱dota6.67ai,经验速度和你一样不然电脑一会就一身神装其实这些都是一样dota6.67a...

2025-10-25 22:33 DouJia

ai形成生成器工具怎么用,AI创意生成家
ai形成生成器工具怎么用,AI创意生成家

  导报讯  (记者林静娴/文沈威/图)配合2017厦门工业博览会年度盛会,昨日在厦门会展中心举办AI创意生成家的两岸智慧自动化产业论坛,邀请了来自两岸AI创意生成家的重量级讲师,由两岸机器人领域权威专家剖析未来趋势、技术整合及案例分...

2025-10-25 15:31 DouJia

探索DOTA6.76AI地图下载:策略与技巧的完美结合,dota地图下载哪个网址好用

DOTA(DefenseoftheAncients)作为一款风靡全球的多人在线战斗竞技游戏,自诞生以来就吸引了无数玩家的目光。而当DOTA遇上AI(人工智能),游戏的趣味性和挑战性更是得到了质的...

AI未来空间站:探索太空中的人工智能奥秘,未来空间站绘画

在人类探索宇宙的壮丽征途中,太空站一直是研究、实验和深空探索的前哨基地。随着人工智能(AI)技术的飞速发展,未来的空间站将变得更加智能化,它们不仅是人类智慧的结晶,更是AI技术在太空中应用的前沿实验场...

百度AI营销实验室:创新营销的新引擎,百度ai销售

在这个数字化迅速发展的时代,人工智能(AI)已经不再是科幻小说中的概念,而是成为了现实世界中推动创新和变革的重要力量。百度作为中国领先的互联网公司,一直致力于AI技术的研发和应用。在众多的AI应用领域...

马斯克all in,马斯克:明年AI将比任何人都聪明
马斯克all in,马斯克:明年AI将比任何人都聪明

  【编者按】当AR、VR、AI等名词充斥各大媒体网站,黑科技的热风似乎只在一线城市上方盘旋,其实,你手机里就有AI技术(苹果Siri)。文中9项数据告诉你,AI并不遥远,未来或将触手可及,沉淀为基础服务设施。  本文由网易科技报道,亿欧...

2025-10-25 08:30 DouJia

python人工智能培训(人工智能python零基础入门)
python人工智能培训(人工智能python零基础入门)

  下一个适合华人的高薪行业是什么?  对于就业python人工智能培训,很多刚刚走出校门的大学生和新移民都吐槽连连python人工智能培训,当然整体的经济环境是造成就业难的一个原因,但不可否认,有些所谓的就业难是因为求职者的技能和社会目前...

2025-10-25 05:32 DouJia

海豚AI学,海豚ai官网
海豚AI学,海豚ai官网

  自考本科是在总体上与一般普通高等学校本科同类专业水平相一致的自学考试,一般分为本科段和独立本科段。本科段是按照普通高校的要求而设置的本科专业我国公民不论年龄、性别、民族、种族、学历等均可报考,完成教学计划,修满学分后即可申请毕业,符合条...

2025-10-24 22:30 DouJia

做ai,做爱出血不疼需要检查吗
做ai,做爱出血不疼需要检查吗

  在人工智能如此火热的情况下做ai,用AI系统撰写文章、写歌、创造视觉艺术已有不少例子,但问题是,你分得清它们是人类创作的还是AI系统创作的吗?  来自巴黎索尼计算机科学实验室的GaetanHadjeres和FrancoisPachet...

2025-10-24 15:31 DouJia

AI伙伴:让你的工作变得更智能,aic伙伴

在这个飞速发展的科技时代,人工智能(AI)已不再是科幻小说中的幻想,而是已经融入我们的日常生活和工作中。AI伙伴,作为一种智能技术的体现,正在改变我们的工作方式,提高工作效率,让我们能够更加专注于创造...